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PREFACE

This short course on laser effects was developed for a 12-hour
series of lectures delivered by the author at the Naval Postgraduate
School in the fall of 1973. The lectures were part of Professor John
Neighbours' course on solid-state physics, which stressed topics ap-
propriate to an understanding of laser effects by solid state physicists.

The author is grateful to Professor Neighbours for the oppor-
tunity to present these lectures and for many valuable discussions
during their development. He also wishes to thank Professor Otto
Heinz, chairman, and those other members of the Department of
Physics and Chemistry of the Naval Postgraduate School, too
numerous to mention here, who through their support and hospi-
tality made valuable contributions to this work.
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RESPONSE OF MATERIALS TO LASER RADIATION:
A SHORT COURSE

1. LASERS

1. 1. Introduction

The word laser, of course, is an acronym for "light amplification by the stimulated
emission of radiation," but that is not terribly enlightening. More correctly described a
laser is a device for producing light that is almost totally coherent. It works in principle
like this: An atom emits a photon of light when it decays from an excited energy state
to a lower state; the difference in energy between the two states AE determines frequency
v according to

(1)AE = hv

where h is Planck's constant. This is illustrated in Fig. 1.

I3

ACE

El

Fig. 1-Energy levels

This is the case for any light source, whether laser, flame, incandescent body, etc. In
the conventional light source, atoms emit photons in a random, sporadic manner and
spontaneously decay to lower states when excited by heat or electric current. In a laser,
on the other hand, the photons are emitted in phase and the electromagnetic radiation
thus produced is, more or less, simply a propagating sinusoidal radiation field that can be
described on a macroscopic level by, for example,

(2)= Re [6Oe-2iTkz1Xeiwo(t-nz/c)]

where

Note: Manuscript submitted January 31, 1974.
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J. T. SCHRIEMPF

& is the electric field of the radiation

Re stands for the real part of the complex quantity in brackets

go is the maximum amplitude

k is the extinction coefficient; in a vacuum, k = 0

z is the direction in which the wave is propagating

X is the wavelength

t is time

n is the index of refraction; in a vacuum, n =1

c is the velocity of light in vacuum.

Equation (2) is a standard representation of the electric field of a traveling light
wave. However, if one measures the electric field at some point in space for light from a
conventional source, the sinusoidal variation expressed in Eq. (2) does not appear, for the
atoms emitting the light are doing so at r-ndc'n, and the sinusoidal variation due to the
emission from each atom is averaged to some "irne-independent value. This is not true of
laser emission, where the individual photons are in phase. Measuring the electric field at
a point in space for laser light results in the oscillating & predicted by Eq. (2).

This coherence is created by taking advantage of stimulated emission in materials in
which metastable states can be induced. The lifetime of an atom in an excited state de-
pends on the quantum mechanical selection rules for transition to a low.-r state, and there
are states from which transition to a lower level is extremely improbable. Such states are
called metastable, and an atom not disturbed by outside influence will remain in a meta-
stable state for a very long time. If a metastable atom interacts with a photon of fre-
quency such that AE = hp, where AE is the energy difference between the atom's normal
and metastable states, stimulated emission will occur. The atom will decay to its normal
state by emitting another photon of frequency v, so that the net result is two photons,
and the second photon will have the same phase temporally and spatially as the first.

In a laser, then, one establishes a large number of atoms in metastable states and
arranges the optics to increase the likelihood of stimulated emission. Schematically, a
typical laser oscillator looks like Fig. 2. The pumping radiation (for example, light from
a flashlamp) excites the atoms in the lasing medium (for example, CY... ions in ruby).
In the decay process (if we have a successful laser), a large number of ions are left in a
metastable state; this is called a population inversion. As some atoms begin to decay,
they stimulate others to decay. But this alone would not provide a laser,, since the emis-
sion would occur in random directions. The role of reflection is very important; the
photons moving perpendicular to the reflectors pass through the medium many times and
on each pass more and more atoms are caused to emit. This results in the build-up of a
very strong coherent light signal that travels in a single direction. Useful light output is
obtained by making one of the mirrors a partial reflector.

2
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Fig. 2-Schematic representation of a laser

It is interesting to look at a few examples of the intensity of laser light. In a typi-
cal ruby laser, the concentration [1] of Cr... ions is about 2 X 1019 cm- 3 , and popula-
tion inversions are of the order of 3 X 1016 cm-3 . Crudely speaking, we can think of
creating 3 X 1016 quanta/cm 3 in the lasing medium. Since we have arranged the laser so
that the output is in a single direction, and since photons move with the speed of light,
we obtain 3 X 1016 X 3 X 1010 = 9 X 1026 quanta/cm 2 s from the laser. For ruby, the
lasing wavelength is 6943A, and since the energy of each quanta is hv, one can readily
calculate that the output is about 2.5 X 108 W/cm2.

Let us compare this to the power that a hot body, say the sun, emits at the same
wavelength with a similar bandwidth. This can be calculated by the use of Planck's
radiation law,

7r2 i3 ehcolkT(

U, is the energy, per unit volume and per unit bandwidth, radiated by a blackbody at
temperature T; k is Boltzmann's constant. The radiation leaves the black-body source at
rate c, so the power radiated per unit area of the source, per unit bandwidth, is

cU= _ w 1w3 1/4 (4)
= 4 7r2 c 2 ehc/kT 1 (

If we use the sun's temperature of 6000 K, and X = 6943A,

I - 22X10-5 erg/cm 2 .

For the ruby laser, a typical line width is 3A, so Aw - 1.2X 1012 s-1 Thus the
power density at the source is

I - 2.5 X 107 erg/cm2 s - 2.5 W/cm2 .

Thus the power density for comparable narrow-bandwidth, nearly single-frequency
light is much greater at a laser source than at a conventional hot-body source, because
laser light is coherent.

3
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1.2. Propagation

The propagation of laser light through the atmosphere poses a complex problem and
it will not be discussed here. Suffice it to say that, as anyone who has driven on a foggy
night certainly realizes, light is certainly scattered in the atmosphere. Lasers of high power
density pose even more difficult propagation problems because the high intensity warms
the air and creates a density change across the beam. This variation in density refracts
the light and causes beam spreading, or "thermal blooming."

Consider briefly the propagation of laser light in free space or in vacuum. Under
these ideal conditions, the only change in the power density is due to simple beam diver-
gence. Since the typical laser emits light that is nearly unidirectional, the beam diver-
gence is small. In fact, one feature of a laser is that the divergence is nearly at the dif-
fraction limit, which is of the order of \/a, where a is the diameter of the output aperture
of the laser. For the ruby laser discussed above, this gives a divergence angle of

0 -Z6943X 10-8 - 7X 10-2 mrad
1

for, say, a 1-cm aperture. In practice, one needs to go to much trouble to realize this
limit of divergence, but it has been done. More commonly, an "off-the-shelf" ruby laser
might have a beam divergence of a few mrad.

The newcomer to lasers has usually heard about diffraction-limited beams and the
consequent extreme directionality of laser light. He is usually surprised to discover that
at long distances from the source these beams have power densities that vary as the recip-
rocal of the square of the distance, like all radiating sources. To see this, consider a
source of power P W, diameter a, and divergence angle 0, as shown in Fig. 3.

a+2r TAN e

Fig. 3-Simplified sketch of laser beam divergence

At distance r from the source, the power density is

I= P
7r (a + 2r tan 0)2

or, since 0 is very small and tan 0 0,

4
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I= P
7r (a + 2r0)2

or

1= ~~P 2(5)
7ra2 (1 + 2ar 1)2

From this expression it is apparent that for large distances, such that 2r/a >> 1,

P
ira2 4r202

4 a2

or

P
7rr2 0 2

or, since 0 - X/a,

I P a2

7rr2 X2

For example, consider a 10-kW beam of 10.6-rim wavelength and 10-cm aperture at 1 mi
(i.e., a high-power CO2 laser);

104 X 102

7r(5280X 12X 2.54)2 (10X 10-4)2

or

I 12 W/cm2 .

From Eq. (5), if we substitute Io, the power density at the source, for P/(7ra2/4) and
recall that 0 - X/a,

1
I= Io (6)

(1 + 2r

From this expression we can see that if r is small there is little change in power density
emitted by the source. The distances at which thip -s true are referred to as "near field,"
and the fine details of the beam pattern, such as local variation in intensity, hot spots,
etc., are preserved in the near field. It is apparent from Eq. (6) that this near-field dis-
tance will be limited to r such that I - Io, or

2 rX<< 1

5
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or

rnear field << a2 /X.

For lasers with exceptionally good optics that have a Gaussian distribution of power den-
sity across the beam, the near field pattern will persist for distances on the order of a2/X
[2-4].

As a final comment on power densities at distances from laser sources, let us use
Eq. (6) to calculate the distance at which the power density is halved:

I 1 1

Io- 2= (2
(1+ 2 rXN~

(I _a2

and

rj/2 = a2

2X~

For our illustration of a CO2 laser with a 10-cm aperture, r - 680 ft, or a little more
than 0.1 mi.

1.3. Response

The remarks here were not intended to explore lasers or laser propagation at any-
thing beyond the most basic level. They were designed rather to set the stage for the
main purpose of these notes, that is, to describe the behavior of materials under irradia-
tion by laser light. A great deal of study is under way in this field, for the application
of highly intense light to materials has many uses. In the medical world, for example,
lasers are used to "spot-weld" detached retinas. The Ford Motor Company is installing a
large laser-computer machine to automatically weld parts of Torino bodies. There are, of
course, possible military applications.

We address ourselves, then, to a detailed examination of what happens when the
light interacts with the material. It is convenient to think of this interaction in three
parts, although all three influence each other and take place simultaneously.

First, the light couples with the material. To a first approximation, this is governed
by simple optical reflectivity, although at high power densities other effects become im-
portant. The net result of the coupling is the conversion of some fraction of the optical
energy into thermal and/or mechanical energy.

Second, the thermomechanical signal is propagated into the material. The details of
this propagation play a prominent role in determining the net effect of the irradiation.
For example, pure copper or aluminum, with their high thermal diffusivity, can readily
dissipate large amounts of thermal energy and thus require higher intensities for, say,
laser welding than more poorly conducting metals like stainless steel.

6



NRL REPORT 7728

Third is the induced effect, the effect the thermomechanical energy has on the ma-
terial, such as melting or vaporization, shock loading, crack propagation, and so on. Here
again there is an interplay with the other parts. When a metal, for example, begins to
melt, its optical reflectivity and thermal diffusivity change markedly, and this changes the
coupling and the energy flow. So in our discussion we shall have to be aware of the in-
teraction between the three aspects of coupling, energy flow, and induced effects.

2. OPTICAL REFLECTIVITY

2.1. General Properties

To consider the coupling of the laser energy to a material, we need first to know the
optical reflectivity R and the transmissivity T for light incident on a surface which divides
two semi-infinite media. The transmissivity plus the reflectivity equals unity at a single
surface:

R + T = 1. (7)

In most practical situations we are dealing with more than one surface; typically, we have
a slab of material with light impinging on one surface. Some light is reflected, and the
rest is either absorbed or passes completely through the slab. In such a situation we shall
describe the net result of all the reflection, after multiple passes inside the slab and ap-
propriate absorption has been accounted for, in terms of the reflectance i{, the absorp-
tance (S, and the transmittance 5J:

i{+ A+ d= 1. (8)

What we really are interested in from the point of view of material response is a, the
absorptance of the material. In most materials of interest from the practical aim of using
lasers to melt, weld, etc., 5T is zero, and

A+a = 1. (9)

In a later section we shall consider the relationship between fR and R.

To understand reflectivity, we must use some general results from the theory of
electromagnetic waves. Let us summarize these briefly at this point. The electric field
of the electromagnetic wave, from Eq. (2), is

S = Re[&oe-21TkzI1eiw(t-nzlc)]

The relationships we need are those among the index of refraction n, the extinction coef-
ficient k, and the material properties. These relationships can be derived by substituting
Eq. (2) in the wave equation

a p 6 = ,ue a 6 + pla Vt' (1Oa)

This results in the expression

7



J. T. SCHRIEMPF(27rk + awn)(b)(Ž + iwn) = PC(wC2 ) + i&~pa. (l Ob)

Note that we are using rationalized MKS units throughout. The material properties enter
through ji, e, and a, which are the magnetic permeability, the dielectric function, and the
electric conductivity of the medium. Using the usual equations between the field vectors

D = Kee 0&, (11a)

B = Km.oH, (lib)

J ad, (11c)

we have

e = Keeo, (lid)

p Kmpo . (le)

In Eqs. (11), eO and po are the electric permittivity and magnetic permeability of a
vacuum. Ke is the dielectric constant and Km the magnetic permeability of the material.
By substituting Eqs. (lid) and (lie) into Eq. (lOb) and using 27r/N = w/c, we obtain

(k + in)2 = _KeKmeOpOc 2 + iKmIo c)

Finally, if we introduce c2 = (cottol and do some algebra,

n - ik = Ad;;m /Ke - i adt (12)COW

This equation relates the material parameters Ki, Ke, and a, which in general may be
complex, to index of refraction n and extinction coefficient k. To describe the propaga-
tion of the light wave thus requires a knowledge of Ke, Km, and s. Before we describe
these, let us look at two more general properties of our propagating electromagnetic
wave.

The first of these is absorption. If the medium is absorbing, the intensity will fall
off to i/e of its initial value in a distance 6, obtained by setting &2 of Eq. (2) equal to
(1/e) &max, or

47rk 6

4irk (13)

This shows why k is called the extinction coefficient, for it determines skin depth 6.
Equation (13) is fairly general in that once k is known, 6 can be calculated. As noted,
a knowledge of the material properties is required to calculate k.

8
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The second general property we wish to derive is the expression for reflectivity, in
terms of n and k. To do this, consider light impinging normally onto an ideal solid sur-
face, as shown in Fig. 4. Here we have illustrated the incident (6i), reflected (&r), and
transmitted (6t) electric waves at a vacuum-material interface. For the present, we limit
our discussion to the case of normal incidence. We now consider the boundary condition.
We have

&i + Sr = -t (14)

for the electric field. For the magnetic field B, we write

Bi - B, = Bt.

K/_

MEDIUM I MEDIUM 2

Fig. 4-Incident, transmitted, and reflected electric
vectors at an interface

The minus sign is before Br because & X B is positive in the direction of propagation of
the wave. Now, the relationship between B and 6, or, since B = pH, between H and l,
is required in order to proceed further. This follows directly from Maxwell's equations:

Vx& = -P aH

V X H = a& + e a-.
at

(16)

(17)

It is convenient to rewrite Eq. (2) and introduce wX = 2irc, to have & explicitly in terms
of w instead of both w and X. Recall that & is a vector, and take it as being along the
x direction. Thus

-_ z(n-ik)
IS, = 'SeiOete c (18)

9
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Here we have dropped the "Re" notation, and shall simply note that we always mean the
real part when we write the wave in exponential form. We shall use unit vectors x, 5,
and z.

Now the curl expressions reduce to

VX&=
az

which, with Eq. (16), tells us that H has only a y component, so

V X H --x
az

Thus Eqs. (16) and (17) become -. _ H- (19)

az t

and

-all = Gx + e aC (20)

and, of course, &y = FD= H= = 0. Putting the expression for F from Eq. (18)
into Eq. (19) leads to

n ik -- z(n-ik)

This is the desired relationship:

Hy = Hnc ) &X. (21)

At this point we note in passing that Eq. (20) or (hOb) could be used to yield the rela-
tionship of n and k to p, e, and a. If the reader is unfamiliar with these relationships, it
is instructive to carry out the algebra.

Returning to our consideration of the reflected electric and magnetic fields, we re-
write Eqs. (14) and (15) with the help of the relationship between H and C, from Eq.
(21);

&i + &r = St

and

pjHj - P1iHr =' 2Ht

becomes

10
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- r = ('n - ik2) 6

Solve for 6 r16 i by eliminating &t:

6r ni - n2 - i(k 1 - k2 )
6i n- + n2 - i(k1 + k2 )

Finally, the reflectivity R at the surface is

6 = - (n1 - n2)2 + (k1 - k2)2
's i (nl +n22)2 + (k1 +k 2) 2

Take medium 1 as a vacuum and drop the subscript 2. This gives, since in a vacuum
n, = 1 and k1 = 0,

(n 1)2 + k2 (23)
(n2+ 1)2 + k2

Equation (23) is the second relationship we will find useful in discussing the coupling of
optical radiation with metals. Note that it is derived for the special case of normal inci-
dence and is applicable to a vacuum-material interface.

2.2. Reflectivity of Metals at Infrared Wavelengths

We turn now to a derivation of the optical reflectivity of metals for infrared wave-
lengths, where experiment has shown that the free-electron theory (sometimes called the
Drude-Lorentz theory) of metals is adequate. This theory rests on three assumptions.
The first is that electromagnetic radiation interacts only with the free electrons in the
metal. The second is that the free electrons obey Ohm's law, or, more specifically, that

m* du + mg -e& (24)dt r

where m* is the effective mass of the electron, v the velocity, r the relaxation time due
to collisions, and -e& the force on the electron due to the electromagnetic field. The
third assumption is that the free electrons of a metal can be described in terms of a single
effective mass, carrier concentration, and relaxation time. There has been a good deal of
discussion about the validity of these assumptions in the literature. Recent work [3] in-
dicates that, for wavelengths in the intermediate infrared (a few microns to many tens of
microns) and beyond, the free-electron theory does a reasonable job of predicting the
reflectivity of metals.

To derive the free-electron optical reflectivity, we try solutions to Eq. (24) of the
form

u eicot

11



J. T. SCHRIEMPF

so that

[m*(iw) + m] V

and

eru = - *(l + T9 

Now the current flow obeys

J = at; = -Nev

where N is the electron concentration
parison of the last two equations,

(number of electrons per unit volume). By com-

a = eT
Ne m*(l + iwT)

or

Ne2 7-
mo ' 1 + ici-)

Now the dc conductivity is

Ne2 r (25a)

We see a is a complex quantity and seek to write it a, the sum of a real and imaginary
part. Thus,

a -Ne
2 T(l-i wr)

m*(l + W2T2 )

Define

a, =a - i a2.

The result is

al = 1 + W2 T2 (25b)

a GOWT (25c)
021 + WT

To proceed further we need to use the general expression for electromagnetic waves de-
veloped in Sec. 2.1. Recall Eq. (12):

12
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n - ik = 1Km Ke - CCO-

and, from the complex a,

n - ik = VKm ASK -ia01 - ia2

If we assume only free-electron optical interactions, the metal does not polarize under the
wave, and Ke = 1. In addition, for metals in the infrared, Km = 1. Thus,

/ical + 02
n - ik = 1a- Co0

or

n~~ -o ik =1 . (26)Cow COW

It remains only to separate the real and imaginary parts of Eq. (26), which will yield two
equations in n and k and thus give n and k in terms of the dc conductivity go and the
relaxation time T. Then we can use our expression for the reflectivity from Eq. (23) to
generate R from n and k.

To carry out the algebra we use the identity

= R +A . R - A
iB 2 +li 2

where

R= /A2 +B2

Letting

02
A = 1 - -

and

01

we have

2n (i e02v) + (1 0 (01 (27a)

and

13
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2k2 (1 ea2) 6 (1 eO)+ I-, * (27b)

Equations (27a) and (27b), together with

R - (n- 1)2 + k2
(n + 1)2 + k2

(Eq. (23)), give the reflectivity. These are elaborate expressions indeed. It is useful to
look at some limiting cases and at the material parameters that determine R.

Notice that R is a function solely of al, a2, and w. Look again at Eqs. (25) and
note that uo can be used to replace r in the expression for al and a2:

00
a1 = m*2 2 (28a)

M 2002
1 + 2N 2e4

2 m*

02 *22 (28b)

1 + co2 N e
N2e4

Equations (28) show that a, and a2, and thus R, depend on frequency W, constant
m*IN, and dc conductivity ao. Thus

R = f(w, ao, m*/N). (29)

This means that we can use the dc conductivity to predict the reflectivity. Furthermore,
if we know the temperature variation of ao, we can use this method to calculate R as a
function of temperature. This is a useful result, because it is difficult to measure optical
reflectivity as a function of temperature, whereas it is fairly easy to measure ao vs tem-
perature. A wealth of data on electrical conductivity has been amassed for most metals
and alloys. Thus the free-electron model is currently enjoying a great deal of attention as
a way of providing reflectivity-vs-temperature information in the study of laser effects.

There is, of course, one problem in using ao(T) data to predict R, and that is the
parameter m*/N. It turns out that R is fairly insensitive to this parameter at infrared
wavelengths. To see this we show here some numerical illustration. Define

0 = m*/mo

where mo is the free electron mass, and then the parameter O/N is equivalent to m*/N.
Figure 5 shows a plot of aR/3(3/N) as a function of 3/N for X = 10 ,um and various values of
0o. Here au is in units of reciprocal ohm-centimeters. Typical values are, for example,

14
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ao = 105 &-1 cm-1 and p/N = 10-23 cm3 for aluminum. Then the value of aR/a([3N)

is about 7.2X 1020 cm- 3 . If we take a 10% error in 13/N we get

a3R A(/N) = 7.2 X 1020 X 10-24

AR = 0.00072.

Since for these values R = 0.97366, the change in R is only about 0.1%. We can obtain
quite good predictions by the Drude-Lorentz model using the experimental values of ao
and the most simple choice for f3/N, namely one free electron for each valence electron
per atom in the metal, and 3 = 1. For alloys, it is sufficient to choose the major con-
stituent of the alloy. For example, with stainless steel we choose iron, or two electrons
per atom, to compute N and hence 13/N.

o22

10 21

1020

119 0 IO

5~ I 
lo-24 lo2to o-2 o2

z

N.~~~~,/ 4 e. 

10~~~~~~~~~~t

10 17 0

WAVE NUMBER= 103 cm'
(1O MICRONS)

1015 I
,oF4 oi23 o622 O721 I~

fl/N (cnrn3)

Fig. 5-Sensitivity of R to the parameter
01/N (Ref. 3)

Figures 6 and 7 show the predictions of the free-electron theory for a variety of
metals and some comparison to experimental data [31. The abrupt change when the
metal melts is caused by the abrupt change in the O., conductivity. Notice in the com-
parison to data that aluminum films give values closest to the theory. This is probably
because they present the best surfaces. Defects, oxide layers, etc., tend to trap the inci-
dent radiation and cause the real surface to absorb more radiation than the ideal surface.
These graphs are in terms of absorptance, which is the experimentally measured quantity,
and, since metals are opaque, d = 1 - R, which is correct for specular reflection at nor-
mal incidence from an opaque substance.
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Fig. 6-Temperature dependence of the absorptance at 10.6 p
for aluminum and stainless steel

Let us return to the expressions for n and k to look at some limiting forms and thus
show how these complete expressions reduce to simple relationships. Remember that R
(Eq. (23) is determined by n and k (Eqs. (27), which are in turn obtained from the dc
conductivity and m*/N (Eqs. (28). The variation of n and k with wavelength is shown in
Fig. 8 for a typical good conductor like aluminum or copper at room temperature. Note
that at long wavelengths n = k. We can derive this by using Eqs. (25) for al and 02 and
noting that as c -o o, a1 -+ Go, and 02 - awrc. By substituting these into Eqs. (27) for
n and k, we can readily show that

n = k = C (30)

This is called the Hagen-Rubens limit. Note that n is very large. Under these conditions
algebra can be used to reduce Eq. (23) to

n - 1
R =--+ 

or

R = 1 - 2,n
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Fig. 7-Free electron theory predictions of absorptivity of several metals at 10.6 p.
The open symbols indicate the molten state.
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and Eq. (30) can be substituted for n to get

R = 1 - 2 2 0 ,
00a

(31)

This is the Hagen-Rubens reflectivity.

We can also comment on the skin depth. We have, at long wavelengths (w - o),

X 2C 0Co
2iT -o'= A GO

This can be rewritten as

6 = 2x.~l0t Go (32)

Equation (32) is the common expression for skin depth used at long wavelengths.

Finally, we see from Fig. 9 that n and k reconverge at short wavelengths. This is
called the plasma resonance. To see this, or e must look at the behavior of n and k over a
larger spectrum. We have already discussed the long-wavelength limiting behavior of n and
k. This is the Hagen-Rubens region, where n = k. At short wavelengths, it is easy to show
from Eqs. (28) that

N2 e4
al m* 2ao0 2

Ne2

a2 e-.(,

WAVE LENGTH (MICRONS)
1000 100 10 I

I 102 103 I

WAVE NUMBER (cm-)

0.-

Fig. 9-n and k as functions of wavelength
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Thus Eq. (27) can be written, for large c, as

= 1 - e 2 (33a)
eom*co 2

k2 = 0. (33b)

Now the plasma frequency is usually defined from Eq. (33a) by setting n = 0 to yield

2 Ne2 (34a)

and thus

2

n2 = 1 - 2 (34b)

We see, then, that at very high frequencies the free-electron model predicts a transparent
behavior (k = 0) and the index of refraction approaches that of a vacuum. The transition
to this transparent behavior takes place at the plasma frequency, and it is a fairly abrupt
transition, as Fig. 9 shows. In fact, some texts call this transition the "ultraviolet catas-
trophe." Note that at w near wp Eqs. (34) and (33) are not valid. For these frequencies
we must use the full expression. If we use again the values of ac = 105 92 1 cm-1 and
1/N = 10-23 cm3 , which are appropriate to a good conductor like aluminum at room

temperature, the reflectivity looks like Fig. 10. One can see that, in terms of the reflec-
tivity, the transition is very abrupt, indeed.

R

1.0

0.8

0.6 - HAGEN-RUBENS

0.4 - PLASMA FREQUENCY

0.2 

0.0 __
I I I I 

1000 100 10 I 0.1

.- R af
Fig. 10-B as a function of wavelength
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The optical reflectivity of real metals is, as we have seen, in reasonable accord with
the free-electron model at wavelengths in the infrared. The surface, however, must be
nearly perfect for the predicted reflectivities to be achieved, and, of course, as the wave-
lengths approach the visible region band effects become important and the reflectivity
shows rapid fluctuations with frequency. The absorptance of a practical metal surface is
still largely an empirical matter. For high-power, continuous-wave radiation by a CO2
laser, some data are available, but very little information on absorptivity as a function of
surface temperature under these conditions is available. Shown in Table 1 are room-
temperature absorptances for a few materials.

Table 1
Room-Temperature Absorbtances of Aerospace

Metals and Alloys at 10.6 gm for Various Surface
Conditions and at Normal Incidence

Metal or | Surface Condition

Alloy Ideal | Polished J As-Received f Sandblasted

Al 0.013 0.030 0.04 0.115
±0.02 ±0.015

Au 0.006 0.01 0.02 0.14

Cu 0.011 0.016 0.06

Ag 0.005 0.011

2024 Al 0.033 0.07 0.25
±0.02

304 Stainless steel 0.11 0.4
± 0.2

Ti Alloy 0.65
(6AI, 4V) ±0.2

Mg Alloy 0.06
Az-31B ±0.03

Data on the reflectivity of a metal during actual irradiation by a laser beam is quite
difficult to obtain, although this information is central to the problem of laser-material
interaction. One classic experiment along these lines was carried out by Bonch-Bruevich,
Imas, Romanov, Libenson, and Mal'tsev in Russia in 1967 [4]. They surrounded their
specimens with a sphere to monitor the reflected radiation, as shown schematically in
Fig. 11. The output of the photodetector is proportional to the reflectance of the spec-
imen. Some of their results for steel and copper are shown in Fig. 12. The laser pulse
(Nd: glass laser, 1.06 gm), with a peak power density of the order of 108W/cm 2 , is
shown as a broken line. As time passes, of course, the laser pulse heats the surface and
the reflectance decreases. An especially interesting feature of these data is the shoulder.
The author has suggested that this leveling off is associated with the surface reaching the
melting point and pausing at that temperature while the thickness of the molten layer
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SPHERE

O PHOTODETECTOR

Fig. 11-Schematic representation of Bonch-Bruevich experiment
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Fig. 12-Reflectance of steel ar.a copper during
irradiation by a laser beam (from Ref. 5; copy-
right 1969, Clarendon Press, Oxford, England.
Used by permission of J.C. Jaeger).
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propagates into the solid. In short order, however, the molten layer begins to heat up
and the reflectance continues to decrease. As the power density of the laser pulse reaches
its peak and begins to fall, the surface temperature can no longer be maintained, and as
the surface cools the reflectance begins to increase again.

3. THERMAL RESPONSE

3.1. Introduction

One of the most important effects of intense laser irradiation is the conversion of
the optical energy in the beam into thermal energy in the material. This is the basis of
many applications of lasers, such as welding and cutting. We shall summarize here this
thermal response. It is basically a classical problem, namely heat flow. In the usual man-
ner, we shall seek solutions to the equation which governs the flow of heat, namely

aT a K'aT) + a (K aT) + a (K aT) + A
at -ax ~ax aY y Z az

We use here p for the density, C for the specific heat, T for temperature, t for time, and
K for thermal conductivity. A is the heat produced per unit volume per unit of time.
In Eq. (35), p, C, and K are considered functions of both position and temperature, and
A is a function of both position and time. In effect, the equation is a simple statement
that the rate at which heat accumulates in an elemental volume dxdydz is equal to the
net flow of heat across the faces of that volume plus the rate at which heat is produced
within the volume.

Thus thermal response studies consist essentially of two parts. First, one needs to
know the rate and source of production of heat by the laser, which yields A. Then one
solves Eq. (35) subject to the boundary conditions of the situation of interest. This can
be a very elaborate task and frequently can be done only with the aid of a computer.
There is a great deal of effort among workers in the field of laser effects to develop an
all-inclusive computer program to solve Eq. (35) for every possible situation. However,
the solution to Eq. (35) can be no better than the knowledge of A, and, as we shall see
in later sections, it is often very difficult to establish A with any precision in a laser-
material interaction situation.

3.2. No Phase Change-Semi-Infinite Solid

Let us consider first the most simple situation. Let the laser beam be perfectly uni-
form over an extremely large area, so that we have a one-dimensional situation. Assume
also that the material parameters are temperature-independent and that the solid is uni-
form and isotropic and of semi-infinite extent (Fig. 13). Finally, assume that there is no
phase change; the rate at which energy enters the material is not sufficient to induce
melting or vaporization.

First rewrite Eq. (35), using the fact that p, C, and K are constant:

a2 T _1 T A (36)
aZ2 -K at -(6
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UNIFORM LASER SEMI-INFINITE
BEAM _ SOLID

z:/

z=O z 0

Fig. 13-Uniform irradiation of a semi-infinite solid

Here we have introduced K = K/(pC), which is the thermal diffusivity. Let us adopt the
convention that T is measured with respect to the initial (or ambient) temperature of the
material. This is possible because Eqs. (35) and (36) define T only to within an additive
constant. Then we have as a boundary condition that T - 0 as z - o. The boundary
condition on the front face (z = 0) depends on what we assume for radiative and con-
vective losses. It can be shown that, for most cases of interest, the rate at which the
laser creates heat at the interface is overwhelmingly larger than convective and radiation
losses, so we ignore them for the present calculation. Thus the boundary condition is
that there is no heat flux at z = 0, that is,

a T OK- =0.
az/Z=O

Now consider A. Denote by I the power density of the laser radiation at the sur-
face; the dimensions of I are power per unit area. The power density of the radiation
transmitted to the surface is I(1 - SR). Then the power density as a function of z is

F =(1 - (R)I e-47rkz/X. (37)

This follows from the fact that the energy in the electromagnetic wave goes as 62. Now
to get the power transferred per unit volume, consider elemental volumes of length dz
and unit area:

A = F = (1- J)I 4rk e-47rkz/X. (38)
az ~~x

The minus sign appears because aFlaz is the power per unit volume lost by the radiation
and A is the power per unit volume absorbed by the material. Finally, we define the
absorption coefficient

4=rk (39)
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which is, of course, 1/6, the skin depth. Thus

A(z,t) = (1 - q)I(t)a e-az

where we have included the possibility of I varying with time.

So the equation to be solved is

a2 T 1 aT
aZ2 K at

(1 - R )I(t) a eaz

K

In keeping with our assumption of temperature-independent thermal parameters, we as-
sume further that R is independent of temperature. Equation (40) is valid for temperature-
dependent il and can be used to give A (z, t, T).

For metals, a is a fairly large number. As we saw in Sec. 2, k is of the order of 100
at X = 10 pm, so that a is of the order of 106 cm- 1 . Hence the absorption occurs in a
very narrow layer at the surface. It then becomes more convenient to seek solutions of

a2T I aT 0
az2 K at

(42)

subject to the boundary conditions that T = 0 at z = A, but with a specified flux into the
surface at z = 0, i.e.,

-K aT\-K_-= = (1 - )I(t)

or, with the definition

F(t) = (1 - R)I(t),

-K aT -K-i= 

(43)

= F(t). (44)

First examine the case of F = Fo, a constant. This is appropriate to irradiation by a con-
tinuous laser, given temperature-independent material properties. We note here only the
solution, for many excellent texts on heat conduction can be consulted for the details [5].

The solution to this problem is

T(z, t) = 2K ierfc [z/(2 AK t)]

or

TV, t) =Fo F0 V -7 e ~z2 I4Kt -2 erfc [z/(2 A/ht)]l.
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The functions which appear here are error functions, and it is useful to summarize some
of their properties and definitions. (See Ref. 5, Ch. II.)

The error function is

erf (x) =2f
-\7 Jo

eQ 2 dQ

erf (o) = 0, erf (a) = 1, erf (-x) = -erf (x).

The complementary error function is

2c ( = - x a 00
erfc (x) = 1 - erf (x)= eQ2 dO.

The integral of the complementary error function is

ierfc (x) = f erfc (Q) dA

or

ierfc (x) = 1 e-X2 - x erfc (x)

() =1 e-x2ierfc (x) = 1& e -_ x + x erf (x).

Some derivatives are useful:

a erf (x) _ a erfc (x) 2 _ 2

ax ax a

a2 erf (x)

ax2

a2 erfc (x)

ax2
4 xe- ,_ x ex2

t/ r

a ierfc (x)_
ax

a2 ierfc (x)

ax2

Now we can show that the boundary
(45) yields

-erfc (x)

2 -x2
r- e s

condition is satisfied. Using the first form of Eq.

aT _2Fo l~t f f c 1( Ih ]
az K terc [z/(2 JJt
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and since erfc (o) = 1,

3T) F
azlz= K

One can also show that Eq. (45) satisfies Eq. (42).

We can use Eq. (45) to show what the front surface temperature behavior is, under
constant irradiation, by setting z = 0 so that

T(o, t) = 2FK Vt (46)

As an illustration, let us calculate the time required to raise aluminum to its melting
point for a power density of 5 kW/cm2 :

K= 2.3 W/cm2

K 0.9 Cm2 /s

Tmet - 6000C

T= Tmeit- Troom - 600 0C

F0 = (1- 9R)I

(1 - R) = 0.04

F0 = 0.04 X 5 X 103 = 200 W/cm 2 .

Then t = (7rK2T)/(4FO K) yields t - 42 s. In practice, it is very difficult to melt extremely
thick slabs of aluminum with even a high-power laser, as these calculations suggest.

Equation (45), although derived for a very simple case, describes many very important
features of thermal response to lasers. First we shall define the diffusion length, which is
useful in that it permits a wide variety of order-of-magnitude calculations to be made. The
thermal diffusion length D is defined as

D = 2 it. (47)

Strictly speaking, the thermal diffusion length is defined as the distance required for the
temperature to drop to le of its initial value and depends somewhat on the geometry and
the boundary condition. For most purposes it is sufficient simply to take it as defined
by Eq. (47). Looking at our solution (Eq. (45)), for example, we see that

T(D, t) =-K - -e -2 erfc(1)}
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T(D,t) = K { ( e - 2 (0-1573)}-

From Eq. (46),

T(D, t) = T(o, t) 1 - 0.1573 \}-

Thus

T(D, t) - 0.09 T(o, t)

in this case, whereas (le) T(o, t) : 0.37 T(o, t). Referring to our example of irradiating
aluminum for 42 s to reach the melting point, we note that the diffusion length at that
time is given by

D = 2/ 0 12 cm,

and, by Eq. (48), the temperature at distance D into the material is 0.09 X 600, or about
500C above ambient.

Now let us illustrate the solution (Eq. (45)) graphically (Fig. 14). For convenience
rewrite the equation by introducing D = 2 N/-J and by reducing it to the error function
erf, so that

T(z, t) = [ 2F0 e-z 2/D2 _ Z + 2 erf (z/D)l
T~z~t)=K L2vw-r 2 j

1.01

0.81

0.61

0.4

erf 2 = C
erf 3 = c
erf oo=

I I I

).9953
).99998
1.0 exactly

021

I I I
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Now let 71 = z1D, and

T(z, t) =-K [LAd -l + q erf (77)] (49a)

or, equivalently in terms of ierfc,

FoD
T(z, t) = -K- ierfc (71). (49b)

Finally, we define a dimensionless temperature 0 = TK/(FOD), so that

0 = ierfc(7). (49c)

Thus the plot of the integral of the complementary error function here is the graph of
the solution to the problem of constant heat flux on the surface of a semi-infinite solid.

Now, although the graph of Eq. (49c) (see Fig. 15) represents very succinctly the
solution to our problem, it does not really show how the temperature varies as a function
of position and time. For this purpose it is useful to look at the temperature profiles for
various times and see how the profile changes with time. These curves can be generated
quickly from 0 = ierfc (77) by recalling the definitions of 0 and ia and writing them in the
following form:

T (2Fo= >F 0 (50a)

z = 2- N/ T q 7. (50b)

0.6 
ierfc (0) = 0.5642
ierfc ( I ) = 0.0502

0.5 ierfc (2)= 0.0010
ierfc (0) = 0 exactly

0.4

0.3 _

0.2-

0.I I

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Fig. 15-The integral of the complimentary error function
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Thus, at a given time the 0 = ierfc (-) curve scales according to Eqs. (50); the basic shape
of the curve is unchanged, but it is stretched one way or the other depending on the
parameters, and this stretching progresses in time as /T The case of aluminum is shown
in Fig. 16.

SEMI-INFINITE SLAB OF ALUMINUM IRRADIATED AT z = 0
BY 200 W/cm2 OF ABSORBED LASER RADIATION
(I 5 kW/cm2 1 - R = 0.4)

600 K = 2.3 W/cm deg
K = 0.9 cm2/S

z4 X DENOTES DIFFUSION LENGTH D =2,/ii

m500 _\2s

o 400

co m~~~~~~~~~~~~z(m

2j0s
Z) 300

2 200 los
Uj

-100

00 2 4 6 8 10 12 14 16 18 20 2

Z (cm)

Fig. 16-Laser-induced temperature rise in aluminum as a function of depth

We can also look at the variation of temperature with time at a fixed position. The
variation of the surface (z = 0) is simply T(o, t) -t, as Eq. (46) shows. Wherever
z/(2 a't) is very small, the temperature variation will approach a Thus, at any posi-
tion T - fTat sufficiently large t. The temperature-vs-time profiles at fixed position for
times such that z/(2 N-Kt) is not small can be calculated, of course, from Eq. (45). Some
results for aluminum, with the parameters used above, are shown in Fig. 17. Notice that
at z = 10 cm the temperature profile is far from the "long-time," or N/T, behavior even at
40 or 50 s, whereas the surface has already begun to melt.

We now turn to some order-of-magnitude arguments. One such argument can be
used to estimate the power-pulse length combination which might be expected to yield
surface vaporization. Consider a laser pulse that has the simple time behavior shown in
Fig. 18 and uniformly irradiates the surface of the material. The pulse length is tp and
the intensity is such that, combined with the reflectance, the absorbed power density is
F0. Again we assume that the optical energy is absorbed in a very thin layer at the sur-
face. Let Dp be the diffusion length associated with the time tp. The question is
whether a significant amount of surface vaporization will occur before the pulse ends.
One approach would be to use Eq. (46) to calculate the surface temperature at the time
tp and compare it to this vaporization temperature. However, this would ignore the in-
fluence of the latent heats of melting and of vaporization, which have an important in-
fluence. We shall discuss thermal flow with phase changes later. For the present purpose
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TIME t (s)

Fig. 17-Laser-induced temperature rise on front surface of
aluminum as a function of time

F0

~~~~ ~ ~ tp

SPATIALLY UNIFORM LASER PULSE,
POWER DENSITY ABSORBED = Eo

PULSE LENGTH = tp

SEMI- INFINITE
SOLID

r I
z=O z=Dp

Fig. 18-Irradiation of a semi-infinite solid by a pulse
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we can include them by considering the energy required to melt and vaporize a portion
of the material. The key is to estimate what thickness of the material is involved, and in
this order-of-magnitude argument we simply use the thermal diffusion length for this
thickness. Thus we set the criterion for vaporization as

F0 tp
D > p[Cs(Tm - To) + Lm + CQ(Tb - Tm) + Lj]

where p is density of the material, Cs and CQ are the specific heats of the solid and
liquid, respectively, Tm is the melting point, Tb is the boiling point, and Lm and Lv are
the heats of melting and vaporization. Notice we are ignoring differences between the
solid and liquid for density and conductivity, as is appropriate in this crude argument. If
numerical values are checked, Lv dominates the expression on the right side of the inequal-
ity. For example, for aluminum Lv = 10,875 J/g, whereas all the other terms contribute
a total of 3,046 Jig. Since the argument is crude, then, one usually takes

F0 tp

Dp

as the criterion for vaporization by a pulse. Since Dp = 2 I/Kt, we have

F0 2 a Lvpo (51)

Some calculations based on Eq. (51) are shown in Fig. 19. Most metals fall in the band
indicated. For a given pulse time, at power densities greater than the band indicates,
vaporization effects would be expected to be important. Some useful thermal constants
are included in Table 2.

C.,
E

e1 VAPORIZATION
U-

U,
zw

hiB06_

a- 10 NO VAPORIZATION

km 
tr: 10 4 _ 
0

I I I I I ,0 I I I 

I09 10-7 10-5 I0-3 I0-1
PULSE TIME tp (s)

THE BAND INDICATES WHERE Eq. (51) LIES FOR MOST METALS

Fig. 19-Power density-pulse time criterion for vaporization
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Table 2
Thermochemical Data for Metals*

Metal or ] Diffusivityt Conductivityt Specific Heattt D Solidus Liquidus Heat of Melting Vaporization Heat of VaporizationMetal or Diffusivityt ~~~~~~~~~I Density
Alloy (cm2/s) (W/cm K) l (cal/s cm K) [ (cal/g K) C Cg/cm) ( C) (Tepa/g) ur (TatT C) epg)erat

Al 0.85 2.40 0.57 1.05 0.25 2.7 -- 660 400 95.6 2,520 10,875 2,600
2024 Al 0.60 1.732 0.414 1.0 0.24 2.77 502 638 __ -- -- -- --

Ti 0.0636 0.216 0.0516 0.753 0.18 4.51 -- 1,670 324 77.3 3,289 8,790 2,100
Ti (6AI, 4V) 0.051 0.19 0.0455 0.837 0.20 4.47 1,537 1,649 -- -- -- -- -

Fe -- -- -- -- -- 7.86 __ 1,536 247 59.1 2,862 6,260 1,496
304 Stainless Steel 0.0523 0.259 0.062 0.628 0.15 8.0 1,399 1,454 -- -- -- -- --

*Data compiled by R. L. Stegman of the Naval Research Laboratory, Washington, D.C.
tThese values represent an average over the temperature between room temperature and the melting point.
tOf the solid.

0
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In deriving Eq. (51), we have been seeking the power density required, at a given
pulse length, for a thermal layer to be vaporized. The same expression, of course, tells
us the pulse time at which vaporization becomes important for a fixed power density.
Rewriting Eq. (51) gives for this time

K2T2X
tp > approx 2 * (52)

4F 0 2K

Let us compare this to the time required for surface vaporization to begin. We do this
by using our solution for heat flow in the semi-infinite solid for the surface (Eq. (46))
and solving for the time at which the front surface reaches the vaporization temperature:

2F0 /Ktvap
Tvap = K VI Or

or

K2 Tv2a 7r
tvap 4F 2 K

0

Thus, at tp = tvap this calculation would predict that vaporization at the surface begins.
For example, at F0 = 106 W/cm2, vaporization begins at tp - 10-5 to 10-6 s, depend-
ing on the metal. On the other hand, for a thermal layer to be evaporated requires, ac-
cording to Eq. (52), tp - 10-3 s. It turns out that both estimates are useful. In a later
section we shall discuss features of a more correct treatment, which accounts for both
the heat of melting and the heat of vaporization in the dynamic situation of propagating
solid-liquid and liquid-vapor interfaces.

3.3. No Phase Change-Slab of Finite Thickness

Let us turn now to a treatment of another geometry which can be useful in practical
cases, namely irradiation of one surface of a sheet or slab of finite thickness. Let the slab
be taken as infinite in extent in the x and y direction, and let the laser irradiation be uni-
form over the entire surface z = 0. Thus we again have a one-dimensional situation, as
shown in Fig. 20. The thickness of the sheet is taken as Q, the absorbed power density
as a function of time is F(t), and we again assume that the radiation is absorbed in a very
narrow layer at the front surface. The equation we wish to solve is, then,

a2 T 1 aT 0

aZ2 K at

with the boundary conditions

aT-K- = F(t)

KaT) = O.
aZ/z=v
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F (t)

0 II- I -> z
a .1

Fig. 20-Irraciaticn of a slab of finite thickness

The second boundary condition states that -he rear surface is insulated. We shall look at
the consequences of this assumption a little later.

As we showed for the semi-infinite slab, the solutions turn out to be elaborate.
Turning to the special case of F(t) = Fo, a constant, the solution is

T(z, t) = K°' t + F111Q 3(Q- Z)2 Q2 2L (-1)" eiKf 2 2t/Q2 cos nir(Q z)
Kk K 6_2__ __ 2 { ~ ~~n1(53)

We can check that this satisfies the boundary conditions:

aT Fo J-(Q-z) 2 L (_l) e-Kn2 7r2 t/V2 nr sin T z)
az K Q2 -2 2 J

Now sin (n7r) =0 and sin (0) = 0, so the X term vanishes at both z = 0 and z = Q,
and

aT _ Fo

TZ). = 0 K

aT) 
aZ=Q= 

Similarly, the thermal diffusion equation is satisfied, as the reader can verify.

Let us look briefly at this solution. It consists of a linear term in t, together with a
"correcting term," which can be plotted as shown in Fig. 21. In other words, what is
plotted is the term
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Fig. 21- T as a function of 1 - z/Q (Ref. 5, p. 113)

, 3(2-z)2 - Q2
6Q2

Let us examine some special cases. At z = 0, for example,

T(o, t) = FOK t + FoQ
00 -~

- 2 1 2 222 .

n =1j
We can rewrite this as

T(o, t) = K°K t + FK V = ° -

Now T at a fixed value of z is a function of Kt/22. If 77 = Kt/22, we can write

T(o, t) = F0K (77 + Iz= 0(77)) -
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Figure 22 shows how j depends on 77, for z = 0, and was taken from the previous graph
of !D vs (1 - z/Q) (Fig. 21). Note that at small 77, i.e., at Kt << Q2, D 0, so that the
front surface initially heats up linearly with time, as

T(o, t) = K t. (56)

0.4 -

0.3

0 .2_ 
01~

01

0 0.1 0.2 0.3 0.4 0.5

Fig. 22- J) at z = 0 as a function of 77

For large t values, or Kt >> Q2, Dz=o approaches a limiting value of about 0.33. Thus at
long times

T(o, t) = K (K2 + 0.33), Kt >> 22. (57)

Here again we see linear behavior, but this time there is an additive constant. If we have
a very thick slab, we should get the same result as our previous solution for the time to
reach 6000C on the front surface of aluminum with an absorbed power density of 200
W/cm2 . It turns out that the limiting form of Eq. (56) is not correct because it ignores the
behavior of j)z=0(77) at small 77. It is necessary to use the full expression. Thus

71 + z =° Oa 0 = KT

Assume that Q = 100 cm, since we know from our infinite-slab solution that the diffusion
distance is 12 cm at T = 600 0C on the front. Thus

77 + -Z=000 = 2=3 X600 - 0.069.
Rdgergzaof 200 X 100

Reading very roughly from the graph of Dz=0 vs 77 gives
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77 - 0.004 at SD 0.065.

Thus our solution is

77 0.004 = t

which gives, since K - 0.9 cm2/s, a time of about 44 s, in reasonable agreement with the
semi-infinite-slab solution.

Now let us turn to a consideration of the rear surface temperature. For this case,
z= 2, so Eq. (53) becomes

T (V, t) = KF + KT - - 22 E ( e-Kn 7r~tQh
K2 K ~ 12 =1n 2

or, introducing 77 as before, we have

T(Q, t) = F0K q + 5z=Q(71))

Comments could be made here for the rear surface temperature, and they would be simi-
lar to those we made for the front surface temperature. It is interesting to compare the
front surface temperature to the back surface temperature. This has a simple form for
thin sheets, where Kt/Q2 >> 1. By referring to the graph (Fig. 21) of D vs (1 - z/2), one
can read off values for Dz=V(-) and Pz=o(00) and thus

T(o, t) - T(Q, t) 0.-5 K

for

Kt/22 >> 1.

Notice in Fig. 21 that the limiting values are approached rapidly; they are nearly realized
by the time Kt/Q2 = 1. As a numerical illustration, if we have 0.3-cm-thick aluminum,

T(o, t) - T(2, t) - 130C

For the same numbers we used above. This situation, with the two surfaces heating at
the same rate but separated by 130C, would start at a time of the order of t _ V2/K
0.1 s. At this time the front surface temperature is about 350C.

Let us turn now to a different sort of heat input. So far we have been discussing
continuous irradiation. Another simple case, which is a reasonable approximation under
certain conditions, is that of a laser pulse which is short enough to be treated as a delta
function. Take again a slab of thickness 2, and assume that the energy is deposited in a
very thin layer near the surface. F refers, as before, to the fraction absorbed by the ma-
terial. The laser power density, that is, must be multiplied by the optical absorptance. In
this case we solve the thermal diffusion equation subject to the boundary condition that
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-K a- =-K aT) =Oaz/s =0 7Z)=

with the stipulation that there is an instantaneous release of E0 units of energy per unit
area in the plane z = 0 at time zero. This type of problem is discussed in Carslaw and
Jaeger [5] and is most easily solved by Laplace transform methods. For our present
purpose we quote the solution

T(zt)=K 1 +2E cos- ) eKrn lr tIQ ]. (58)

In Eq. (58) we have introduced E0 , the energy per unit area in the pulse. Thus,

E= f F(t) dt.
0

For the case under consideration, F(t) is considered to be a delta function.

Equation (58) is the basis for a scheme used quite frequently for the measurement of
thermal parameters [6]. This scheme consists of using a thin sheet of the material to be
studied and irradiating uniformly one surface with a very short laser pulse while monitor-
ing the temperature rise induced on the back surface. If one knows E0 , and if the as-
sumptions of no heat loss are valid, the experiment can yield values of both specific heat
and thermal conductivity. One adjusts the pulse energy, and hence E0, so that the in-
duced temperature rise is small. In this way the values of specific heat and thermal con-
ductivity are representative of essentially the ambient temperature of the material.

To see how this is applied, rewrite Eq. (58) for the back surface, z = 2:

T(2,) =K [1 + 2 (_1)n eKn27r2t/22

n =1

If we introduce a characteristic time tc = V2 /Kir2 , Eq. (59) looks approximately like the
curve shown in Fig. 23. Here we have also introduced a characteristic temperature T, =
E0K/K2 and plotted T/TC vs t/t,, or

00

T = 1 + 2 L (_1)ne-n2t/tc (60)

n=1

Essentially the experiment consists of monitoring the temperature as a function of time
and fitting it to Eq. (60). This can be done quite readily. First, the long-term tempera-
ture rise Too yields the specific heat because

T-e
T,
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1.0 I-…

0.5 0.5

I-/ 

0 I t 2 3 4 5 6
1.37

t/tc

Fig. 23-Normalized back surface temperature response to
a delta function heat pulse

and, on substituting for To,

E O K

00 KQ

or, since K = K/pC,

TC p2 (61)

This technique of measuring specific heat is, of course, not unique to pulsed lasers. It is
sometimes referred to as the slab calorimeter. The accuracy of the method depends on
knowing E0, which is frequently difficult to ascertain with laser radiation. In some ap-
plications Eq. (61) is used to calculate E0 , the energy actually absorbed from the laser
pulse, by using materials of known specific heat.

The pulsed laser measurement technique is especially suited to determining thermal
diffusivity. The magnitude of the back surface temperature rise depends, as we saw, on
the energy which is coupled into the material, and this may be difficult to know with
any precision. However the time dependence of the back surface temperature is inde-
pendent of the energy input and is controlled only by the diffusivity K. A simple way
to derive K from a temperature-time profile can be seen from Fig. 23. One measures the
time required for the measured temperature response to reach some fraction, say one-
half, of its limiting value. Let us call this time t1 /2. It can be shown numerically [6]
from Eq. (60) that

T -n11+2/(-1)"T = 1 =1 + 2 E7 (_j)n e-tl2C

n=1

is satisfied when
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t1/2 t, = 1.37.

Using t, = k 2 /(K7r2 ) yields

1.37 = 2 (62)
it2 t1!2

Thus a measurement of t1o2, together with the thickness of the specimen, immediately
gives the thermal diffusivity. If one knows Eo this experiment gives values of both the
specific heat and the diffusivity, and hence if one knows the density p the experiment
gives the thermal conductivity.

This technique has been applied often at rather high temperatures, usually in the
10000C range and above. At these temperatures steady-state methods of measuring the
thermal conductivity are difficult to apply because radiation losses are so large. In the
laser flash technique the radiation loss goes like T4 - T 4 , where To is the starting or00 0
ambient temperature, established by, say, a furnace, and Too is defined above. This
radiation loss can be made quite small by adjusting Eo so that Too is only a few degrees
larger than To. Since the precise value of E0 is difficult to establish, these experiments
typically measure only the thermal diffusivity, not the conductivity.

A final remark on the criterion for the applicability of Eq. (60) to slab heating con-
cerns the limits on the laser pulse duration. No laser pulse is, of course, a true 6 function.
Our solution would be expected to be correct for laser pulse times which are short com-
pared to the time it takes the back surface to respond. The response times are of the
order of t,, so we have the criterion

tp << tc

or

tP << 22/(KMr2).

Calculations that include explicitly the time dependence of the laser pulse [7] indicate
that our 6-function solution is in error by less than about 2% provided that tp is less than
or equal to about 4% of t,. Some typical values of t, with specimens 1 mm thick are
given below.

K t, = k2/K7r2
(cm2 /s) (Ms)

Aluminum 0.85 1.2
Stainless steel 0.0523 19

Typical laser pulse lengths are about 1/2 to 1 ins for the so-called "normal mode"
lasers, and thus with 1-mm-thick specimens the technique would be fairly accurate for
stainless steel but not very good for aluminum. Thicker specimens would help, but this
would make the rear surface temperature rise smaller. If our laser pulse has, say, 20
J/cm2 in it and we use the 10.6-pm absorptance quoted earlier for as-received surfaces,
the anticipated temperature rises at the back of the 1-mm specimens would be as shown
below.
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E )
(d (J/cm2)

P C
(g/cm2) (J/g0 C)

Aluminum
Stainless steel

0.04
0.4

0.8
8.0

2.7
8.0

1.05
0.628

2.8
16

We see the need to use shorter laser pulses but with the same amount of energy. Another
solution would be to carry out a more detailed heat-flow calculation. Both tailoring of
the pulse shape and more detailed calculations are usually employed in current applica-
tions of laser flash techniques [8].

3.4. Melting

Consider first the case of a semi-infinite slab melted, with instantaneous melt re-
moval, as indicated in Fig. 24.

F0

I I

I=
SEMI- INFINITE
MEDIUM

z= Ut

Fig. 24-Irradiation of a semi-infinite slab with
instantaneous melt removal

We solve this by considering ourselves moving along with the interface. But to do
this we have to reconsider our heat-flow equation, which is

a2 T 1 DT =

aZ2 K at

Recall that this was derived by noting the rate at which heat accumulated in an elemental
volume:

PCaT a 1K. -a" =0.pC at az (_ az °

If the medium is moving, an additional amount of heat pCT is flowing in at rate V.
So
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aT a
-K -h-- becomes -K 5T + VpCT.

az az

Thus, for moving media, the heat-flow equation is

PC aT + a (-K a.T + VpCT) = 0,

provided we are not generating any heat in the solid.

Thus

a K a2 + V a- = 0. (63)
at az2 az

So we can find at least a steady-state solution to the problem by basing our coordinate
system at the interface and letting the material flow in at some rate to be determined.
Call the rate -U, where U is a positive number. The solution will be

T = Tm e Uz /K (64)

where K is diffusivity of the solid, Tm is tle melting temperature, and z' is the distance
from the melting front. That is, this is the solution to

aT a2 T aT
at - az'2 az'

as we can verify. First, aTlat = 0 because this is the steady-state profile, or

K aa2T + u aT = O. (65)
az' 2 + U-z=0

Of course T = Tm at z' = 0, and T - 0 as z' - oc. It is trivial to show, by differentia-
tion, that Eq. (64) is the solution to Eq. (65).

To calculate U, we use energy balance. F0 must raise the material to Tm, its melting
point (Tm0C above ambient), and then melt it. Thus in time At the energy put into
thickness Az' (where U = Az'/At) must be given by

FoAt
Az,'= Lp + CTm p

or

F0 = p[L + CTm] U. (66)

Thus we can write, for the steady-state temperature profile,

42



NRL REPORT 7728

T = Tm exp { - K[ (L+CT (67)

where F0 /[p(L + CTm)] is the velocity of the melting front. This solution also would be
appropriate to sublimation, where L is then the heat of sublimation and Tm the sublima-
tion temperature. Note that this is the semi-infinite-slab approximation and cannot be
used to estimate the time to penetrate a slab of given thickness.

Let us consider aluminum, with F0 = 200 W/cm2 . Taking a more accurate value of
the melting point than in earlier examples, Tm = 6400C (the actual melting point of
660 0C minus room temperature of 200C). If we put in the other values of the param-
eters, T falls off as shown in Fig. 25.

T=640e7OO82 z'
640

CRUDE SKETCH

NOTE I/ePOINTAT-z' 12cm

0

'- 320I 

0 10 20 30

z' (cm)

Fig. 25-Temperature profile in aluminum with
instantaneous melt removal

As another illustration, consider plexiglass. Plexiglass is rapidly eroded by 10.6-gm
laser radiation, by a process that is essentially sublimation. Since it couples extremely
well ((d 1.0) and has a very low thermal diffusivity (K I 10-4 cm2 /s), it can be used to
make "burn patterns" of the beam. That is, the depth of the erosion at a given point is
linearly proportional to the energy density incident at that point. We can understand
this by applying heat-flow concepts. Let us apply Eq. (67) and interpret L as the heat of
erosion. Since C t 1.1 J/g-0C and Tm t 2000C and L ; 1000 J/g, for a crude calcula-
tion we can ignore CTm. The density is about 1.1 g/cm3 . We then have

T 200 e9Foz'

Since d - 1, for a typical power density like 5 kW/cm 2 we have F0 = 5 X 103, so that

T z 200 e- 4.5 x104Z'

Hence the temperature profile is confined to an extremely narrow region near the eroding
surface. The rate of erosion is, by Eq. (66) with CTm ignored,
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U - 4.5 cm/s.

Now we can see why plexiglass is useful for monitoring the beam profile, and why
it can pick up fairly fine structure in the beam. After irradiation for a time t the pene-
tration depth is Ut = (Fot)/(pL), and this should be large compared to a thermal diffusion
length D = 2 \/iY if the pattern is to reveal fine structure. Otherwise thermal diffusion
would "wash out" the pattern by distributing the energy in a radial direction. Thus

2 N-Kt<<F 0 t
pL

For the numbers we used above at t - 1/4 s, we have a depth of 1 cm. Thus

2 10- 4 X 0.1 mm << 1 cm
4

and we see the criterion is well satisfied.

Let us look at a more complete problem, namely melting by laser radiation of a
slab of material. One basic problem is what happens to the melted material. (We will
ignore the vaporization question for now.) There are two cases which are fairly amenable
to numerical solution. They are the "fully retained liquiQ" case, in which all the liquid
is presumed to stay in place, and the "full ablation" case, in which the melt is presumed
to disappear magically as soon as it forms. The latter case might correspond to the pres-
ence of a heavy windstream which blows away the melt.

Looking first at the full ablation case, we have the situation shown in Fig. 26. T2
is the temperature in the solid, and the front surface at z = 0 first warms up to the melt-
ing point Tm (above ambient) and then begins to move to the right. S denotes its posi-
tion as a function of time. When S = Q, the process is over, and we call this time tf. We
denote by tm the time at which the front surface begins to melt. The field equation is

f ~ ~~~ l T-m

F0 INSULATED BACK SURFACE

zO zZS / z- z 2

SOLID REGION, T - T2 (zt)

Fig. 26-Fully ablated case
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a2 T2

az 2

The boundary conditions are

a T2 )
K2 az z=0

1 aT 2-=0 for O <t <tf .
KC2 at

= -F0 for 0 < t 6 tm

aT 2 )K2 az)S dS
= -F0 + pL Tt for tm 6 t 6 tf

aT2\K 2 -jZ = 0 for 0 6 t < tf.

The starting conditions are

T 2 (z,o) =T20

S)t _ tm ° -

The above boundary conditions are nonlinear, and a solution in analytical form is
very difficult. This is due to the presence of the moving boundary and appears in the
second boundary condition, which states that the boundary moves at a rate dS/dt deter-
mined by a balance between the heat of melting L, the heat input F0, and the heat flow
by thermal conduction.

One relationship must hold for this problem; it follows from energy balance. The
total energy put in per unit area is Fotf, and, since the material is simply heated to Tm
and melted, this energy goes solely to those processes. Thus

Fo tf = p (L + CTm).

This is convenient, for one can check numerical solutions. More important, it gives a
first-order estimate of the time needed to melt through materials by laser radiation.

Turning now to the fully retained liquid case, we have the following set of equations.
The definitions are the same as above, except that subscript 1 now refers to the molten
state, whereas subscript 2 is still the solid state (see Fig. 27). The field equations are

a 2 T2 _ 1 T2_

aZ2 K2 at

a2T, a1 aT
__ - = ~Z_2 K1 at

0 6 t 6 tf

tm 6 t 6 tf (liquid).

The boundary conditions are
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T =Tm

, l~~W1
- I

I INSULATED BACK

I SURFACE

- I
I

I t

Z=O z= S zZl z -

REGION,T= T (z,t)
SOLID REGION, T=T 2 (z,t)

Fig. 27-Fully retained liquid case

= Fo

= Fo

dS= -pL dt

= 0

0 6 t < tm

tm 6 t 6 tf

tm 6 t 6 tf

0 6 t 6 tf

T2)Z=S = Ti)z=s = Tm tm S t S tf.

The initial conditions are

T 2 (z, °) = T20

S)t tm = 0.

Rather than discuss this problem in detail, we pass on to the more practical, although
more complex, case of vaporization. For the fully retained liquid case, suffice it to say
that the retained liquid has a shielding effect, and this causes the time to reach melting at

the back surface to be longer than in the ablated model. Some typical values of melt-
through time for 0.2-cm-thick material with F0 - 2 kW/cm2 are given below.
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Aluminum
Stainless steel

Ablated
(s)

0.32
4.0

Retained
(s)

0.37
4.5

3.5. Melting and Vaporization

We present here without derivation some results for the case of a slab of material,
insulated on the surfaces, subjected to uniform and continuous irradiation [9]. These
are one-dimensional calculations. It is assumed that the melt is fully retained until it
reaches the vaporization temperature, where it disappears. Then we have the case illus-
trated in Fig. 28.

I

I

I

I

LIQUID I

I

I

I

I

SOLID

Z =° Z: S 2 Z- Si Z:5

Fig. 28-Melting and vaporization, with fully retained liquid

INSULATED BACK
SURFACE

z - *

Here S2 is the position of the liquid-vapor interface and S1 the position of the solid-
liquid interface. This problem has been solved numerically at NRL [9], and we shall
show some results. The assumptions are that in each phase the thermal properties are
independent of temperature. In the curves, the following definitions are used:

U~- F0 k
- pLKsolid

Ksolid t
I - Q2

0 = (T- Tm)CsolidIL
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L = latent heat of fusion

subscript 0 = ambient temperature

X = Lv/L, with Lv the latent heat of vaporization.

In these equations T is understood to be in degrees Celsius and represents the actual tem-
perature. Although the thermal conductivities of liquid and solid are allowed to differ,
the specific heats are assumed to be the same.

Note that when F0 - 0 and F0 -+ , we get certain easy limits. For F0 - 0 no va-
porization can take place, the melting is small, and we approach the fully ablated limit.
On the other hand, as F0 e o, all the liquid should be vaporized by tf, the time the back
surface melts.

So in this limit

Fotf = pQ[L + (Tm - TO)Csolid + (Tv - Tm)Cliquid + Lj] (F0 -+ o),

whereas

Fotf = pQ[L + (Tm - TO)Csolid] (Fo 0 0)

The limiting values are represented by the asymptotes of the curves (Figs. 29-31)
indicated by dashed lines on the plots of aoQ vs r. Note on these plots that the dashed
lines are at 450, or have a slope of -1. These are log-log plots, so the asymptotes can be
described by

log (oaQ) = log ( - log Tf

where C -+ C. as -+ cc, and C -o Co as oaQ e zero. If we take the antilog,

U(x = C Tz ,

substituting in the definition of caQ and Tf gives

pLKsolid Ksolid tf

or

Fo tf = pULC

By comparison with the F0 - 0 and the F0 - o limits above we can see that

=1Co L [L + (Tm - TO)Csolid]

and

Ccc =j L[L + (Tm - TO)Csolid + (Tv - Tm)Cliquid + Lj].
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0.1 1.0 10.0
NONDIMENSIONAL BURN-THROUGH TIME rf

Fig. 29-Power density vs burn-through time for
stainless steel (Ref. 9)

NONDIMENSIONAL BURN-THROUGH TIME rf

Fig. 30-Power density vs burn-through time for
titanium alloy (Ref. 9)
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a'J

z
LU
0

Ir

0Li

0~

-J

z0
(nz

z0
z

1.0 10.0 100.0
NONDIMENSIONAL BURN-THROUGH TIME Tf

Fig. 31-Power density vs burn-through time for
aluminum alloy (Ref. 9)

The numerical values of the thermal parameters which were used in generating these solu-
tions are included as a separate table (Table 3) in addition to the graphs (Figs. 29-34).

0.0 

co

W 10~

C) =Q =350 26.2 1.73 0.434 0.130

-J

0

co
z 304 STAINLESS STEEL

z 3.00
z

1.0 10.0
NONDIMENSIONAL TIME r

Fig. 32-Rear surface temperature rise for stainless steel (Ref. 9)
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NONDIMENSIONAL TIME r

Fig. 33-Rear surface temperature rise for aluminum
alloy (Ref. 9)

NONDIMENSIONAL TIME, r

Fig. 34-Rear surface temperature rise for titanium alloy (Ref. 9)
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Provided one knows F0, these solutions are reasonable estimates for the time to
penetrate a metal specimen with a laser beam. In application, however, one must con-
sider the actual size of the beam. These solutions will be useful for effects in the center
of the beam if the diffusion length is small compared to the beam radius, or if for times
up to and including the melt-through time tf the beam radius R is

R> 2 Vit.

In terms of the parameter rf this becomes, upon squaring both sides,

Or4 ( T)

4. EFFECTS OF PULSED LASER RADIATION

4.1. Power Levels of Pulsed Lasers

Highly intense pulses of short duration can be produced in a variety of ways. Typi-
cally it is done by creating a large population inversion by the injection of electrical
energy from the discharge of large, highly charged capacitors. In these systems all the
energy is produced in a burst, the duration of which can be made quite short. We shall
not discuss the various techniques by which these pulses are created, but in Table 4 we
simply note some commonly obtained values [2].

Table 4

Laser Type Pulse Power | Energy
Length Per Pulse

Ruby (normal mode) 0.1-1 ms 10-100 kW 1-50 J
Ruby (Q-switched) 10-8 s 1-10 GW 1-10 J
Ruby (mode-locked) 10-11 s 0.1-1 TW 0.1-1 J
C02 TEA l0 X 10-6 s 100 MW 100 J
CO2 e-beam 2X 10-5 50 MW 1000 J
CO2 shock tube gdl 3 X 10-4 s 0.3 MW 100 J

From the above table it is apparent that with beam areas of the order of 1 cm2 extremely
high power densities can be obtained, and, although the pulse lengths are short, the total
energy in each pulse is considerable. The available power densities range as high as 1012
W/cm 2 .

Practically speaking, one is usually interested only in power densities below the
breakdown threshold of air because at higher power densities the energy never reaches
the target. These breakdown levels are functions of wavelength, spot size, and pulse
length, and depend as well on the contaminants in the air. Typical values are 109 W/cm2

in "clean" air at STP for CO2 laser pulses with duration of about 10-6 s and longer. At
shorter pulse lengths the threshold is somewhat higher, becoming 1010 W/cm2 at 10-8 s
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and 1011 W/cm2 at 10-10 s. In the infrared region, the breakdown threshold scales with
the square of the frequency.

4.2. Material Vaporization Effects

We shall first discuss the effect of high-power-density laser pulses on materials from
the point of view of target vaporization, and shall assume that the vaporizing surface is
not shielded from the radiation by the vapor. In this case we can show that, in addition
to thermal input to the target, there is a strong pressure built up on the target surface
due to recoil from the blowoff of the vapor. The integral of this pressure over the time
of the laser pulse imparts a net impulse to the target. There arises then the possibility of
inducing stresses large enough to create gross mechanical changes, such as spall and de-
formation, by pulsed laser irradiation.

To calculate the pressure applied to a surface by a laser pulse, we start with a con-
sideration of the vaporization process. We use a one-dimensional calculation because in
most cases of interest the beam radius R is larger than the thermal diffusion length during
the pulse time tp, or

R >> 2 VIt .

We shall avoid consideration of thin targets, so that Q is also large compared to the diffu-
sion length. In this case we can calculate the time tb required for the front surface to
reach the vaporization temperature T, from the semi-infinite slab result of Eq. (46),
which is

2F0 IFtb

or

or
7rK2 T2

tb = 2
4Fo2 K

or, since

K
K =K,

2
7r KpCTs (68)

In applying Eq. (46) in this way, we ignore the molten layer and assume that the values
of K, p, and c appropriate to the solid can be used. This is not as gross an approxima-
tion as it may seem, because at these power densities the molten layer is very thin.

Once the material on the surface reaches the boiling point, the surface begins to erode
at a rate Us given by energy consideration, as we saw in section 3.
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Ps[CsolidTm + Lm + Cliquid(Tv - Tm) + Lv]

To simplify the calculation we take Cliquid = Csolid = C and ignore Lm by comparison to
L,. Then

us - F0 (69)
p,(L, + CTv)

Here we have used Ps for the density of the solid. So after the time tb given by Eq. (68)
the surface begins to evaporate, and it recedes at the rate Us. By conservation of momen-
tum it must be true that

PvUv = PsUs (70)

where P, and U, designate the density and velocity, respectively, of the evaporation prod-
ucts. Thus we have

F0pvU = (71)
Lv+ CTv

by combining Eqs. (69) and (70).

To see how the pressure exerted on the surface is related to density and velocity,
note that the pressure on the surface is just the pressure of the evaporation products. To
calculate this pressure, consider particles which move a distance Az in time At under the
pressure P and thereby acquire a velocity V. The pressure (force per unit area) must
equal the rate of change of momentum (per unit area) so that

p (pAz) V
At

That is, pAz is the mass per unit area which is brought to velocity V in time At by the
force per unit area P. V = Az/At, and so P = pV2 . Thus, in our specific case of density
Pu and velocity Uv there is an associated pressure, given by

P = PuUV . (72)

We could compute the pressure from this expression if we knew Pu and Uv. How-
ever, we only know the product pvUv, from Eq. (71). We need another relationship,
which we simply take from the ideal gas law,

P = Pu A TV

where R is the gas constant and A the molecular weight. Denote R/A by C' and use
Eq. (72), then
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PV U = PXC'TV

or

U" = V7e . (73)

Upon combining Eqs. (71) through (73), we get the desired relationship,

L = + CT,

Since the specific heat of metal is typically 3R/A we can approximate C' by (1/3) C to
yield

= ,/, [Lv + CTV] (74)

Finally, we compute the specific impulse delivered during the pulse, which is the force per
unit area multiplied by the time over which it acts, and we get

Im= P(tp - tb)
or

m - 1 Fo V : 1 or KpCTu2 (75a),/= 3 [Lv + CTJ] VP4 F2 (
In terms of the energy in the pulse, Eo = FOtp, this can be written as

Im = -3- [LV + CTv] 01-4 2E O . 7b

A word about units is in order. It has become conventional to quote impulse in
units of dyne-s, and specific impulse in dyne-s/cm2 . If we use J/cm2 for energy density,
J/g-2C for specific heat, and J/g for heat of vaporization, we have

J/cm 2

cm 2 VTR

- cm-2 f07eg-g
or

[Im] = 10 (dyne-s)/cm 2 .

This unit, dyne-s/cm2 , is called a tap. Thus, in taps,

56



NRL REPORT 7728

Im = 1.83x10 3 Eo [L + CT]2 t (76)

Note that Eq. (76) predicts a threshold value of E0 for impulse production at a given
pulse length tp. This is due to the criterion we introduced for vaporization; vaporization
must commence before the end of the pulse or there will be no impulse. The threshold
is given by

XT KpCTV2

4 2

or

Eo)th 2

This vaporization model also predicts that, at very large E0, the impulse per unit area is
directly proportional to the energy density with a constant coupling coefficient, given by

(WinN _____= 1.83 X 103
E_)ax (Lv + CTv)

This is the limit at which vaporization begins essentially instantaneously with respect to
the pulse length and vapor products are produced for the entire pulse.

Some numerical values are illustrated below and in Fig. 35. E0 is in J/cm 2 and tp
in ps, so that I. is in taps:

For titanium

IM = 8.04 Eo [1 - 6.23tp/Eo] .

For aluminum

Im = 6.94 Eo [1 - 33.9tp/Eo2]

The above model illustrates the principles involved in generating impulse by laser
vaporization. In fact, in predicting threshold values it gives results which are within a
factor of two of experimental measurements. It has been refined [10] by a calculation
which accounts for the fact that T, is probably not a handbook value that comes from
measurements at atmospheric pressure, but rather a different value appropriate to the
dynamic and high-pressure situation created by the laser-induced vaporization. In this
refinement, TV is determined from the kinetic model of vaporization, which predicts that
Us = ca exp [-Lv/(R'Tv)], where ca is the speed of sound in the solid and R' the gas
constant per gram. When this is done, the thresholds agree very well with theory. How-
ever, as E0 (and hence F0, since tp is constant) is increased, experiments show that de-
livered impulse does not increase indefinitely but begins to fall off. This is due to the
onset of absorption of laser energy by the vapor products and/or the heated air near the
target. We turn now to a consideration of this problem.
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Fig. 35-Coupling coefficient vs energy density for titanium

4.3. Effects from Absorption of Radiation in the Plume

The plume of vaporized material blown off the target becomes, at some power den-
sity, hot enough that it or the air begins to absorb the laser radiation. The onset of this
process is not thoroughly understood, and the ignition of these so-called absorption waves
is the subject of a great deal of research. Proper treatment of the problem depends on,
among other things, computing the onset of ionization and the rate of absorption of light
by the electrons and also accounting for both cascade processes and relaxation processes
in a full dynamic sense. We shall not treat this problem here. Rather we shall look at
some crude models which show, in a semiquantitative way, various features of the ab-
sorption process.

First note that the decoupling of the absorption from the material surface due to
shielding by the plume depends on the wavelength of the radiation. Recall from Eqs. (34)
that at the plasma frequency the reflectivity of a "free-electron" metal drops sharply
from a value near unity to essentially zero. If we assume that the coupling to the plume
is due to the light interacting with electrons, Eq. (34a) is valid. Using the mass of the
free electron gives

Up = 8.97X 10 3 N 1 /2 (77)

for the plasma frequency in hertz, when N is in electrons per cubic centimeter. This can
be rewritten in terms of the corresponding wavelength ?p to yield

N = (1.12X 1013)/ 2 (78)

where Xp is in centimeters. At a given wavelength the plume is transparent until the elec-
tron density reaches the value given by Eq. (78), where there will be a transition to a
condition in which the plume absorbs and reflects the radiation and thereby shields the
material. For 10.6-pm (C02 ) radiation, shielding begins at 1019 electrons per cm3, for
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1.06 jim (Nd) at 1021 electrons per cm3 , and for 0.6943 pm (ruby) at 2.3X 1021 elec-
trons per cm3 .

When the electron density reaches a high enough value, the beam decouples from
the surface and presumably the pressure due to material blowoff will drop. To get some
idea of the order of magnitude of the energy density for a given pulse length where this
process begins, let us simply assume that cutoff begins when the front surface reaches
the temperature at which the material is fully ionized. This should predict an upper
limit, for full ionization is obviously not required. For example, solids have N - 1023
cm- 3 , whereas we only require, at 10.6 gim, N > 1019 cm- 3. For simplicity assume
that melting and vaporization processes can be ignored, and again use for the front sur-
face temperature rise the simple expression

T = 2Fo I/t
K i

A typical ionization temperature for a metal would be about 75,000cC. Using simply the
values of K and IC for the solid, we get for titanium,

F0 VFT - 5.7 X 104 W sl/ 2/cm2

Using E0 = Fot, this can be rewritten as

Eo - 57 V/7 (79)

where tats is understood to be time in microseconds.

Figure 36 shows some data taken by Dr. Rudder of the Air Force Weapons Labora-
tory, at two pulse lengths, 1.2 and 11 jis, with 1.06-gm radiation and titanium targets
[11]. The lines marked "Anisimov predictions" are calculated from the vaporization
model of the previous section with the refined method for determining Tv. (This was
first done in the Soviet Union by Anisimov [19].) The experimental data agree very well
at values of E near threshold. Note that Eq. (79) for estimating the onset of shielding is
roughly consistent with these data, although the experimental onset of shielding is, as one
might expect, fairly gradual. The line on the graph marked LSD Predictions refers to a
theoretical estimate based on the idea that the laser light, when it couples into the blow-
off, can create an explosionlike shock wave in the air which travels up the beam, absorb-
ing the radiation energy in the process. This laser-supported-detonation, or LSD, wave is
one form of laser-supported-absorption wave. We will discuss these waves next.

Once the coupling of the radiation with the ejected vapor (and perhaps the air)
reaches a sufficient level, the absorption region begins to behave in a fashion character-
ized by hydrodynamic dissipation of the energy coupled into it. For now, let us ignore
the ignition problem. The absorption region typically propagates up the laser beam in a
way that is determined by the medium in which it propagates (usually air) and also by
the balance between the power being fed in by the laser and the relaxation processes
which dissipate the power. Three types of laser-supported-absorption waves are usually
identified. Typical power levels at which they appear and their typical velocities of
propagation are indicated below for 10.6-pum radiation and targets in air at standard tem-
perature and pressure [12].

59



J. T. SCHRIEMPF

-C1w LSD PREDICTIONS

| XANISIMOV PREDICIN \

0J 0

0.1 III 11 I I I ,,,..,,,
I 101 102 103

E (j/cm 2 )

Fig. 36-Specific impulse delivered to solid targets by 1.06-pIm
laser radiation (Ref. 11)

Power Level Velocity of
of Laser Flux Propagation

Type of Wave (W/cm2 ) (cm/s)

Laser-supported-detonation 107 105

wave (LSDW)

Laser-supported-combustion 104 103
wave (LSCW)

Plasmatron 104 0

The LSD wave propagates as a shock wave, i.e., at supersonic velocity, whereas the
LSC wave moves more slowly and relaxes by thermal conduction. The plasmatron is at
rest, with the energy input being balanced by reradiation and convective losses into the
atmosphere. Although we discuss these effects here in the section on pulsed lasers, they
are just as valid for continuous radiation. Since pulsed lasers are the most convenient
devices for reaching these power levels, especially for LSD waves, absorption waves are
usually considered under pulsed effects.

Hydrodynamic theory can be applied to model these waves. The problem was first
solved in the Soviet Union by Raizer [13]. Detonation waves can be discussed most
readily because the hydrodynamic equations reduce to fairly simple expressions, so we
shall consider them in some detail. A few remarks about combustion waves will come
later.
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We can derive conditions for the steady-state behavior of a detonation wave by con-
sidering conservation of mass, momentum, and energy at the detonation front. For this
purpose we do not concern ourselves with how the process starts but presume that a
detonation wave has been formed and is propagating at some steady rate as sketched in
Fig. 37. The absorption region is propagating to the right at a steady velocity u. We
assume that it is very thin and can be treated as a detonation front. Thus u is the det-
onation velocity. The temperature and density, etc., of the air go through very rapid
changes in the very short distance V. Note that this wave propagates, in this treatment,
in air, and thus our results will be independent of target material.

*14,e*.

X TO TARGET RELAXATION AMBIENT AIR . LASER BEAM
-0 INTENSITY I

ABSORPTION REGION LBEAM RADIUS R

V Vz

r Z

Fig. 37-Temperature and density profiles typical of a
laser-supported-detonation wave (Ref. 12)

In this discussion "behind the front" refers to the high-temperature-and-pressure
region immediately to the left of the absorption region in Fig. 37. "Ahead of the front"
is to the right in the sketch and refers to ambient air conditions. Note we have given the
beam a finite radius R and thus will have to consider lateral expansion. First let us do
the one-dimensional problem and assume that the detonation front propagates simply as
a plane wave.

Behind the front let p, P, and e be the density, pressure, and internal energy per
unit mass, respectively, and let po, Po, and eo be the same variables ahead of the front.
Define the velocities with respect to a coordinate system moving with the front at the
detonation rate u. Then the ambient gas moves into the front with the speed u, and we
define v as the speed with which the high-pressure gases leave the front. We can now
write down the conservation equations for mass, momentum, and energy across the deto-
nation front. These equations are based on flow, that is, they are in the terms of "per
unit area, per unit time." The equation for mass is

Mass

(80)Pou = Pv.
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The conservation-of-momentum condition results from equating the impulse to the
change in momentum. Now impulse is force multiplied by time, but in the "per unit
area, per unit time" sense this becomes simply pressure. Since mass, in this flow con-
cept, is pv, momentum is (pv)v. Hence we have

P - Po = -[(pv)v - (Pou)u]

and, if we ignore Po, which is much smaller than P, we have for momentum

Momentum

P + pv2 = pou 2 . (81)

The conservation-of-energy condition follows from similar considerations. The dif-
ference in energy flow on each side of the front must be balanced by the work done on
the gas (Pou - Pv) and the energy absorbed from the laser beam, which, using our earlier
notation, is F. F = ciI, where CY is the absorptance of the gas in the absorption region.

Thus we have

pv (e + 2 V2) - pou (eo + -2 U2) = Pou - Pv + F.

If we use Po 0 0 and eo 0 and substitute from Eq. (80), we get for energy

e + 1 2 - 1 ,2 =P F
2 2 p Pou

or

Energy

e + P + 1 V2 = 1 u2 + F (82)
p 2 2 pOu

Our goal is to use these conservation laws to predict the pressure P behind the front
and ultimately the pressure transmitted to the target. For now assume that F is known,
and, of course, the ambient air density po is known. Thus we have three equations and
five unknowns, P, p, v, e, and u. To proceed we need to invoke some equation of state
for the gases, and we shall simply assume that the ideal gas law holds. Thus we have

P = pR'T (83)

where R' is the gas constant per unit mass, or R' = R/A, where A is the molecular weight.
(Since the wave is presumed to be in air in this treatment, A would be the average mo-
lecular weight of air. Taking A for air to be 29.4 g/mol gives R' = 2.84X 106 erg/(g-0 C)
and is consistent with the ideal gas law and with po0= 1.29X 10-3 g/cm3 for air at 0C
and 1 atmosphere = 106 dyne/cm2 .) Now Eq. (83) essentially introduces another un-
known, the temperature T, so we need to add the expression for the energy of an ideal
gas, which is
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e R'T = 84)
aY - 1 (Y- l)p

where y is the ratio of the specific heats, y = Cp/C,. For our purposes it is sufficient to
take y = 1.4.

Now we have four equations (Eqs. (80)-(82), (84)) in five unknowns (P, p, v, e, and u).
To get the final condition we use the criterion for detonation, which is that the velocity
of the high-pressure gases behind the front, relative to the front, is equal to or greater
than the local speed of sound. Intuitively this seems reasonable, for propagation of shock
waves is, by definition, in excess of the speed of sound. The criterion can be properly
derived from a consideration of the thermodynamics of the situation, but we shall not do
so here [14]. Since we shall be interested in the minimum value of I (or F) required to
sustain a detonation wave, we take v equal to the speed of sound. For an ideal gas the
sound speed is (yp/p)l/ 2 , so we have our last condition,

V2 = yP. (85)

P

Before discussing the algebra, let us collect the equations-

pou = pv (80)

P + pV2 = pou2 (81)

e + _P + 1 2 = 1 2 + F (82)
p 2 2 Pou

e = 'P (84)
PU2 = .(85)

Combine Eqs. (80) and (81) to yield expressions for u2 and u2:

U2 = PP (86)
Po(P - PO)

-2 = PP 0 (87)
M(P - PO)

Now use Eqs. (85) and (87) to eliminate v2 and p so that we can get

J 1y + a(88)
Po 0

which is one of the equations we need, namely p in terms of the known quantities po
and -y. Now we can use Eq. (81) to get P in terms of u by eliminating v2 with Eq. (85) to
get
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1 + Y (89)

We need one more relation to complete the solution, namely u in terms of F. This will,
by Eq. (89), give us P in terms of F. To get this we use Eq. (82) and replace e via Eq.
(84) and v2 via Eq. (85). Thus Eq. (82) becomes

P P + 2P I= u2 + F
T-y-l)p pP 2 p 2 POu~

If we use Eq. (89) to eliminate P, we get

U [2 1 Po PO 1 Po] 1 U2 + F
+ y L('1Y) P P 2 yPj 2 POU

or

_O ( U2 2 11 + + F
1+ z - 1 2 pou

or

1 Po U2( 1~u2 + -i
2 p PO\ 1, P0 u

If we use Eq. (88) for po/p, we get

12 72 1 2 + F
2 (y2 -) 2 POU

Finally we arrive at

U3(72 - 1) =o

or

=(2(ey
2 - 1)F) I/3

The equations which represent the solution for the detonation wave, then, are

p 1 l+y (88)

Po 0

+ (2P = + Y(89)
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[2(72 - )F] / 
= [2CPo lijl3 (90)

These three equations, together with the ideal gas law, represent the formal solution
to the propagation of the laser-supported-detonation wave. Given the temperature be-
hind the front, and since Eq. (88) defines p, we could calculate P and hence u and finally
the F required to support it. However, this does not really solve the problem. What we
wish to discover is: given the laser intensity I, will an LSD wave be supported? To an-
swer this question, we need to consider the distance it takes for the laser radiation to be
absorbed. We also need a more realistic situation then the simple plane wave.

First we note that the beam has a finite radius R and that lateral expansion can take
place. The order of magnitude of the radial expansion velocity will be the speed of
sound c,. To maintain the detonation, we must replace the energy lost to expansion by
energy put into the absorption region. To simplify, let us assume all of the laser beam
energy is absorbed in the distance Q. (Actually the beam intensity only falls by l/e in
the distance Q.) We define At as the time for the shock front to move a distance Q, or
At = Q/u. In this time the radial expansion is the amount caAt. Now 7rR2 IAt is the
energy deposited by the beam in the cylindrical volume shown in Fig. 38 (c0 At << R).
But the energy in this volume after expansion is approximately equal to its volume multi-
plied by its internal energy per unit volume. Thus

irR2 IAt poe[7rR2Q + 27rRcaAtQ]

ca At

Fig. 38-Cylindrical volume which absorbs
beam energy via expansion

Since At= k/u,

IirR 2 z poeu [1TR2 + 2 7rRca

Note that for -y 1.4, Eq. (88) prqdicts that p. 2 po and hence, using pv = pa po,
u - 2 ca. So we have, after some algebra,

poeu 2 (91)
1+ k
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But this equation simply represents the rate at which we must put energy into the absorp-
tion volume in order to maintain the conditions we assume to carry out our detonation
wave calculation, namely a plane wave propagating by absorption of laser energy in a
distance V. Thus the energy flow per unit area from the laser beam is

F-= (92)
1 + (QkR)

Finally, we can complete the problem if we know the absorption length Q. To
compute V we need to invoke some model of the ionized air. For this purpose it is suf-
ficient to assume that free electrons absorb the light and that the electrons come from
singly ionized atoms. We shall not derive the expressions which we need but simply
quote them. There are two relationships. The first of these is the Saha equation [14a],
which relates the fraction of atoms ionized a to the absolute temperature T and the ion-
ization potential j of a single atom:

a 2 g 1 m _2__mokT_ I 2

1- _ = -2 .- Vh2) e *kT. (93)

In this equation m is the mass of the atom, mo is that of the electron, k is Boltzmann's
constant, and h is Planck's constant. The statistical weights of the ground state of the
atom and its first ionized state are go and g1 , respectively. Typically g1 = go = 1. In
terms of known constants, then, the Saha equation gives us the degree of ionization as a
function of temperature.

Knowing the degree of ionization, we can get the absorption length. Again we sim-
ply quote the relationship [12], which assumes that the light is absorbed by inverse
bremsstrahlung. The expression is

1/2 e6h2 (!o2U2)( 
1 4 K 27r 1/ e~h (Pe A hvlhT)

= 3 (~movT) moc(hv)3 \

which, at the temperatures of interest and for 10.6-jim radiation, becomes (for hv/kT<< 1)

1 _ 4 / 27r\1/2 e6 h2 p2__2
2 3 3mO) m2mOc(hv) 2 (kT)392

In Eq. (94) v is, of course, the frequency of the laser radiation, c is the speed of light, and
e is the electronic charge. By combining Eqs. (93) and (94) we can calculate V in terms
of temperature T, density p, and known parameters. A typical value of I for air is of the
order of 13 eV. (For 02 1 is 12.1 eV, for N2 it is 15.6 eV.) Thus we have

= f (p, T)

or, since p = po(l + -y)/'y - 2po, we can get a relationship between V and T and hence
between I and T, via Eqs. (90) and (92). Typical results are shown in Fig. 39.
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Fig. 39-Relationship between I and T for a laser-supported-detonation wave (Ref.
12). This plot is based on a more realistic expression for the equation of state of
the gases than the ideal gas law, but the ideal gas law gives a similar result.

Here we have assumed a beam radius of 10 cm. The important point is that there is
a minimum in the I-vs-T relation. We identify this as the minimum flux 1m required to
maintain an LSD wave. Associated with it is the temperature Tm of the high-pressure
region at the detonation front. We can then use our detonation-wave relationships, Eqs.
(88) through (90), to get the pressure behind the front, or equivalently, get pressure from
Tm via p - 2po and the ideal gas law.

We shall turn to a calculation of the pressure on the target in a moment. First note
that the radial expansion concept imposes a natural criterion for the difference between
a combustion wave and a detonation wave. The time for radial expansion is R/c, whereas
the time for passage of the absorption region is k/u. If the detonation condition is to be
maintained, radial expansion times must be larger than propagation times in order for the
high-pressure region to move as a shock front and not dissipate itself radially. Hence
R/c, > Q/u. We have already noted that u - 2c, or, crudely, u ;7- c,, so that R > Q. or
Q/R < 1, is the condition for detonation waves. If Q becomes larger than R the absorp-
tion region is large, the relaxation in the radial direction is important, and the process
called a combustion wave takes place. This can be treated in a similar fashion to the
detonation wave, but the hydrodynamic equations do not take the simple form of Eqs.
(80)-(82). We shall not treat combustion waves in this report. The solution in Fig. 39
is for a detonation wave and hence is valid for Q/R < 1. The limit Q/R = 1 is shown in
the figure by a dashed line.

Finally, compute the impulse delivered to a target by a laser beam of intensity I just
sufficient to maintain a detonation wave [11]. The beam has a pulse duration tp. We
wish to calculate the effect on the target due to the "explosion products" behind the
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absorption region. These, of course, expand in all directions and create a pressure on the
target. To demonstrate the effect we shall use a very simple model, namely a model of
cylindrical expansion. We consider that the absorption region has propagated a distance
Z by the end of the laser pulse, and at that time we have created a cylinder of high-
pressure gas which has a radius equal to the beam radius R, a length Z, and a pressure
Pd given by Eqs. (89) and (90) above, with P = Pd. This cylinder is then allowed to ex-
pand radially at a speed estimated to be the speed of sound c,. Then we get the impulse
delivered to the target by integrating the force on the target due to the pressure in the
expanding cylinder during the time the cylinder expands from R to the target radius RT.
For RT very large, the integration is stopped when the cylinder pressure drops to atmos-
pheric pressure. The model is sketched in Fig. 40 at the time t =tp.

RT

TARGET X---

Z =utp.

Fig. 40-Radial expansion model for impulse delivered to a target from a laser-supported-detonation wave

The model might be expected to be valid if Z >> R and if tp << the time required
for radial expansion, either to RT or to atmospheric pressure, to take place. We also are
assuming that impulse due to target vaporization is negligible, i.e., that the detonation
wave is formed very early in the laser pulse.

We take the radial expansion to be at constant temperature. Then P times the vol-
ume 0 of the cylinder is a constant. Since our model presumes only cylindrical expan-
sion, we have the condition that

Pr2 = constant (95)

where r is the radius of the cylinder and R 6 r < ST. We shall need this relationship in
the derivation of the impulse. Let the impulse be Im, and let F be the force on the tar-
get due to the pressure. This gives

t(r=RT)
Im~ =f F dt

t(r=R)

where the upper limit is understood to be valid only where P is greater than atmospheric
pressure at r = RT. Since the radial expansion rate is c,
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dr = Ca dt.

From ideal gas relation for the speed of sound,

"YP
Ca = p

p

we have

dt = k dr.

Thus

I~= (RT~ F-s--dr..RT P

Now at any time

F = (7rr2)P,

but, since r2 P is constant, we can evaluate F from the initial pressure Pd at r = R, or

F = 7rR 2 Pd.

Now the impulse becomes

Im = 7rRB2Pd J - dr.
R

Again invoking r2 P= constant gives

r2 P = PdR2

or

P =Pd R 2B2

So the impulse is

X (96)
R p

Recall from Eq. (88) that p = po(l + -y)/y. This gives

I' irB jPdP0(l Y R2_Rin(y2 \2 2)
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Since R < RT, we shall ignore the R2 /2 term. The specific impulse Im, which is Ip
divided by the area of the laser beam rRB2 is then

Im = B2R To/. ly

Recalling the expression in Eqs. (89) and (90) for Pd, and ignoring Q/R with respect to
unity, we can write

= R 2 //1 + Pa(\ Po y2(21) ]2/3
Im 2R_ go 72 )1 )° (1p + 1] T

This simplifies to

B=2 T [2(Jy2- 1)]1/3 p2 3I1/3
'in = [2(-yTyl/3

The expression in braces is nearly equal to unity for typical value of 'y (say, y = 1.4), so

2

in = -R Tpj2/1 3 I1/3

Now the energy per unit area in the beam is E0 = Itp, and we can write the coupling
coefficient Im /E 0 as

IM = R 2 p2/ 3/( / 32E2 3 (97)

This is the equation of the straight line marked LSD Predictions shown in Fig. 36, where
the calculations were done for the parameters appropriate to the 1.2-ps pulse length.

Several important consequences of the LSD wave are seen in Eq. (97). One is that
the coupling coefficient is reduced as E0 becomes larger, which tells us that we cannot
create an arbitrarily large impulse at a target by simply increasing the energy in the laser
beam. In fact, when Eq. (97) is considered to be correct at high E0 and the results of
the vaporization model (see Eq. (76) and Fig. 36) are used at lower values of E 0, there
is, for a given pulse length, an optimum value of E 0 for transferring the largest amount of
impulse to a target. For the 1.2-ps pulse illustrated in Fig. 36 the optimum value of E0
is about 22 J/cm 2, and this is in reasonable accord with the data. Of course the specific

1/3impulse Im per se goes as E0 , so larger E0 will create larger Im. However, this slow in-
crease of Im with E 0 is a very inefficient way to impart stress to a material. A better
scheme, perhaps, would be to use multiple pulses at the optimum E0 value.

Another consequence of the LSD wave is a lack of dependence of impulse on the
parameters of the target material. The same impulse is produced independently of the
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target. This is in accord with experiment. When I is well into the range where LSD's are
formed, the measured impulse is the same for all target materials. Some data taken by
NRL [15] are shown in Fig. 41. In this graph we see, in accord with the vaporization
model, a strong dependence of Im /E0 on material type at lower power densities, whereas
at the high power densities typical of LSD formation the values of ImI/Eo are the same for
all materials. In this range, however, a target area dependence appears. The target area
dependence shown is for aluminum. Here again the general behavior predicted by Eq.
(97) can be seen.
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Fig. 41-Coupling coefficient as a function of power density (Ref. 15)

We have not yet considered the radius at which the expanding cylinder reaches at-
mospheric pressure. Call this radius Ro. As explained above Pr2 is constant, so

2=
PORo2 = FdR2

where Po is atmospheric pressure, 106 dyne/cm 2 . Thus,

Ro = RBp0
12 P212

From Eqs. (89) and (90), for Pd this becomes
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B0 = BP"1/ 2 Po A(Y2_ 1)I]2/30 1~+ 'Y LPo i

Again the factors involving y are nearly unity, so

Ro = R 0

Upon substituting I = Eo/tp, we get

B0 = BPj1/ 2p 1/6 E /3 t-1/3. (98)

So if Ro is less than RT, one replaces RT by Ro in Eq. (97). Target sizes larger than Ro
will all receive the same impulse.

A numerical illustration is useful. Let EO = 1000 J/cm 2 and tP = 100 jis. Suppose
the beam radius is 1 cm. The power density I is about 107 W/cm2, so we expect a LSD
wave. If we take RT = 5 cm for the target radius, Eq. (97) yields (with po = 1.29X 10-3
g/cm3 )

IM 52 (1-29X -3)2 //-4)1/3( 1 0 1o0)2/3 dyne-s
E0 2 lO)[(lO0'j erg

-M - 7X 10-7 dyne-s/erg

or

E- 7 dyne-s/J.

In this example expansion to atmospheric pressure would take place at a radius given by
Eq. (98):

Ro = (106) 1/2(1.29X 10-3)1/6(1lo0)1/3(10-4)-1/3

where we have used erg/cm2 for E0. Then

Ro - 15 cm.

Thus targets with radii of 15 cm and larger would exhibit a maximum coupling coefficient
of (15/5)2 times 7, or about 63 dyne-s/J. If we compute Im, we have 63,000 dyne-s/cm2 ,
that is 63,000 taps, as the maximum specific impulse from this laser pulse. Since this im-
pulse is delivered in times of the order of magnitude of the laser pulse time, this corre-
sponds to a pressure of roughly (6.3X 104)/10-4 - 6 X 108 dyne/cm 2 , or about 600
atmospheres.
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